

Feb 19-8:47 AM

Class QZ 10

1) Consider a geometric Prob, dist with $p=.75$
find $P(x \leq 4)$
$P(x \leq 4)=$ geomet $d f(.75,4)=.996$
2) Consider a poisson Prob, dist. with $\mu=6$
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { find } P(x \geq 4) \quad \text { We dost we } \\
& P(x \geq 4)=1-P(x \leq 3)=1 \text { - poissoncd } f(6,3)=\frac{849}{\checkmark}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow

Consider a uniform Prob. dist. For all values
\qquad
\qquad
from 1 to 26.

1) $P(x=5)=0$

2) $P(x<5$ or $x>21)=1-(21-5) \cdot \frac{1}{25}=1-\frac{16}{25}=\left[\frac{9}{25}=3.36\right.$
3) find x that separates the top 5% from the rest.
$\begin{array}{ll}(x-1) \cdot \frac{1}{25}=.95 \\ x-1 & =25(.95) \\ x=25(.95)+1 & x=24.75\end{array}$ \qquad
\qquad
\qquad

\qquad

Nov 27-7:38 AM

\qquad \longrightarrow
\qquad

Nov 27-8:09 AM

\qquad

Nov 27-8:38 AM
\qquad
\qquad
\qquad

Central - Limit Theorem

\qquad
\qquad

Ex: $N(75,8)$, Consider all Samples of Size 4

$$
\mu_{\bar{x}}=\mu=75 \quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{8}{\sqrt{4}}=\frac{8}{2}=4
$$

Ex: $N(120,15)$, Consider all Samples of Size 5 .
$\mu_{\bar{x}}=\mu=120 \quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{15}{\sqrt{5}}=6.708$
$\sigma_{\bar{x}}^{2}=\frac{\sigma^{2}}{n}=\frac{15^{2}}{5}=45 \quad \begin{aligned} & \text { check } \\ & \sqrt{45}=6.708\end{aligned}$
\qquad

Nov 27-8:53 AM

Nov 27-9:06 AM

Ages of students are N.D. with $\mu=32.5 \dot{\varepsilon}, \sigma=6.5$ If we randomly select 3 students find the prob. that their mean age is
a) below 35 Yrs
$P(\bar{x}<35)$
$=$ normalcdf $(-E 99,35,32.5,65 / \sqrt{3}) \quad C L T\left\{\begin{array}{l}\mu_{\bar{x}}=\mu=32.5 \\ \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{6.5}{\sqrt{3}}\end{array}\right.$
.747
b) more than 30 Yrs. $=$ normal $f(30, E 99,32.5,65 / \sqrt{3})$
$=.747$

\qquad
\qquad
\qquad

Nov 27-9:18 AM

